Groundwater Mounding
Causes, Issues and Prevention

WCOWMA - Onsite Wastewater
Association of BC
2017 Annual Convention and Tradeshow
March 11, 2017

Presented by
Daniel Watterson, P.Geo., LHG
Watterson Geoscience Inc.
INTRODUCTION

– What is groundwater mounding and why is it important?
– Basics of effluent and groundwater behavior in soil
– How is it related to vertical separation?
– Problematic site characteristics and how to recognize them
– Ways to manage and/or mitigate potential GW mounding
– When to call a professional?
Groundwater Mounding - Causes, Issues and Prevention

• KEY part of site assessment, soil evaluation and system design process
 – Setbacks and potential breakout locations
 – Soil properties
 – Limiting layers
 – Seasonal effects

• Possible system constraint per SPM

• May significantly affect your system design
Groundwater Mounding - Causes, Issues and Prevention
Groundwater Mounding - Causes, Issues and Prevention

Groundwater Flow Basics

- In general, effluent and shallow GW flows downhill
- Many factors involved, but key factors are ground slope and soil permeability
Groundwater Mounding - Causes, Issues and Prevention

!!NOT TRUE*!!
Groundwater Mounding - Causes, Issues and Prevention

In almost all situations, GW is contained within pores within sediments, and within fractures within bedrock.
Groundwater Mounding - Causes, Issues and Prevention

Effluent Behavior in Soil

• Unsaturated Flow
 – Water moves over surface of soil particles
 – Slow, lots of time for oxygenation, chemical and biological treatment

• Saturated Flow
 – Water/effluent moves through pore spaces
 – Little oxygen available
 – Much faster compared to unsaturated flow
Groundwater Mounding - Causes, Issues and Prevention

- Groundwater mounding will occur when effluent reaches limiting layer or,
- Effluent is discharged into soil faster than it can migrate away

Key Issue – How to maintain sufficient vertical separation
Groundwater Mounding - *Causes, Issues and Prevention*

• **What is Vertical Separation?**
 – Distance between infiltration area and limiting layer
 – Bedrock, dense or low permeability soil, hardpan, or **groundwater**

• **Why do we need VS anyway?**
 – Critical to system performance
 – Most effluent treatment here
 – Water table surface is where biological treatment is supposed to be essentially complete

• **Common Standards**
 – Depends on soil characteristics and jurisdiction
 – Generally vary between 0.3 and 1.2 m
Groundwater Mounding - *Causes, Issues and Prevention*

Groundwater Mounding

- **Thin Aerated Soil**
- **Insufficient Treatment**
- **Anaerobic Conditions**
- **Very Limited Treatment**
- **Limiting Layer**

Need to maintain this
Groundwater Mounding - Causes, Issues and Prevention

More Considerations

• HLR = water dumped daily onto the same piece of land, every day, for a long time
 – Values in SPM based on soil infiltration characteristics, need to consider underlying materials
 – Too much will saturate soil, reduce or eliminate unsaturated flow, may cause GW mounding

Key Relevant Information

– Ground surface slope direction, and slope steepness
– Depth to groundwater or limiting layer
– Soil properties: hydraulic conductivity, structure, texture, compactness
Groundwater Mounding - *Causes, Issues and Prevention*

Consequences Of Failure To Recognize Potential Gw Mounding
Groundwater Mounding - Causes, Issues and Prevention

AVOID AREAS WHERE SURFACE FLOWS CONVERGE

GOOD LOCATION

965' 964' 963' 962' 961' 960' 959'
Groundwater Mounding - Causes, Issues and Prevention

Infiltration area

No limiting layer

Basement

Tank
Groundwater Mounding - Causes, Issues and Prevention

- Infiltration Area
- Limiting layer
- Basement
- Groundwater Mound
- Tank

Watterson Geoscience Inc.
Groundwater Consulting Services
Groundwater Mounding - Causes, Issues and Prevention

Avoid areas where surface flows converge.
Groundwater Mounding - Causes, Issues and Prevention

Tank

Infiltration area

No Limiting Layer
Groundwater Mounding - Causes, Issues and Prevention

- Tank
- Groundwater Mound
- Limiting Layer
- Infiltration Area
Groundwater Mounding - Causes, Issues and Prevention

- Well
- Tank
- Infiltration area
- No limiting layer or High K soil
- Groundwater Flow
Groundwater Mounding - Causes, Issues and Prevention

Important - Water well can be any direction from infiltration area for this to happen
Groundwater Mounding - *Causes, Issues and Prevention*

How To Identify Where Mounding May Be An Issue

• Three Levels of Assessment
 – Area-wide Assessment
 – Lot Scale - Test Pit Assessment
 – Hand-Sample Characterization
Groundwater Mounding - Causes, Issues and Prevention

• Area- Wide Assessment
 – Make sure potential impacts from mounding are identified and accounted for
 – Make sure system design is appropriate for entire area, not just the individual lot
 – Identify potentially limiting factors that may be evident on adjacent lands
Groundwater Mounding - *Causes, Issues and Prevention*

Area-wide Observations

- Standing water, wetland / swampy areas
- Hydrophilic vegetation (willows, alders/poplars, ferns, skunk cabbage, etc)
Groundwater Mounding - *Causes, Issues and Prevention*

Area-wide Observations

- Topographic Slope (shallow GW flow direction)
- Exposed bedrock, large rocks at the ground surface
- Nearby GW seepage, potential breakout locations
Groundwater Mounding - Causes, Issues and Prevention
Groundwater Mounding - *Causes, Issues and Prevention*

More Area-wide Considerations

- Effects of location / season / climate / weather on field observations
- Temporary standing water
- Abundant precip vs limited precip
- Abundant evaporation vs limited evaporation

Identify where effluent could go and what could be affected
Groundwater Mounding - Causes, Issues and Prevention

Lot Scale - Test Pit Profiles
– Focus on proposed disposal area
– Test pits are better than auger holes
– More than 2 may be required

– Test pits are THE best way to identify potential mounding conditions
Groundwater Mounding - Causes, Issues and Prevention

Test Pit Profiles

A (THE?) KEY INDICATOR OF POTENTIAL PROBLEMS
PERMEABLE SOIL (HIGH HLR) OVER LOW PERMEABILITY SOIL / LIMITING LAYER (WATER, BR, TILL/HARDPAN, SILT, CLAY)
Groundwater Mounding - Causes, Issues and Prevention

Test Pit Profiles

• Increasing soil density with depth (harder digging, penetration resistance)
• Digging artifacts - smearing
Groundwater Mounding - *Causes, Issues and Prevention*

Test Pit Profiles

- Digging artifacts - bucket teeth marks
Groundwater Mounding - Causes, Issues and Prevention

Test Pit Profiles
Groundwater Mounding - Causes, Issues and Prevention

Test Pit Profiles

• Barriers to vertical flow
Groundwater Mounding - Causes, Issues and Prevention

Test Pit Profiles

- Increasing rocks, cobbles and boulders with depth
Groundwater Mounding - Causes, Issues and Prevention

Test Pit Profiles
Groundwater Mounding - Causes, Issues and Prevention

Test Pit Profiles

- Lack of soil structure
- Stiff / smeared sidewalls
Groundwater Mounding - Causes, Issues and Prevention

Test Pit Profiles
Groundwater Mounding - *Causes, Issues and Prevention*

Test Pit Profiles

- Soil color changes – generally darker with depth (gray, olive brown)
Groundwater Mounding - Causes, Issues and Prevention

Test Pit Profiles

• Seepage Into Test Pit
Groundwater Mounding - Causes, Issues and Prevention

- Obscure / unusual Soils, TP profile
Groundwater Mounding - *Causes, Issues and Prevention*

Test Pit Profiles

- Stiff sidewalls
- Darker soil with depth
- Seepage into test pit
Groundwater Mounding - *Causes, Issues and Prevention*

Test Pit Profiles
Groundwater Mounding - *Causes, Issues and Prevention*

Test Pit Profiles

- Staining, mottles = *Seasonal Saturation*
Groundwater Mounding - Causes, Issues and Prevention

Test Pit Profiles
Groundwater Mounding - *Causes, Issues and Prevention*

Test Pit Profiles

- Mottles
- Gray soil with depth
Groundwater Mounding - Causes, Issues and Prevention

Test Pit Profiles

- Staining, mottles
- Seasonal saturation
Groundwater Mounding - Causes, Issues and Prevention

Test Pit Profiles
Groundwater Mounding - Causes, Issues and Prevention

Test Pit Profiles

• Opposite of limiting layer –
• Preferential Effluent Flow Pathways

Beware of utility trenches!
Groundwater Mounding - Causes, Issues and Prevention

Smallest Site Factors – Hand-Held Soil Characteristics

- Use to confirm/support test pit observations, refine estimates of soil infiltration capacity
- Key factors: color, density (consistence), texture (composition) moisture content, clay plasticity, nodules, cementation

![Mason Jar Soil Test](https://www.preparednessmama.com)

- Clay layer – water clears
- Silt layer – 2 hours
- Sand layers – 1 minute

20% Clay
35% Silt
45% Sand

www.PreparednessMama.com

Watterson Geoscience Inc.
Groundwater Consulting Services
Groundwater Mounding - Causes, Issues and Prevention

Smallest Site Factors – Hand-held Soil Characteristics

• If soil is classified silt/silt loam or clay/clay loam, then possible low infiltration potential / permeability problems

Combined with other site characteristics, may indicate potential mounding issues
Groundwater Mounding - *Causes, Issues and Prevention*

Soil Permeability Characteristics

- Continuum between amazingly high (clean sand & gravel) and amazingly low (silt & clay)

- Primary factor which governs effluent and GW flow movement and velocity in soil

<table>
<thead>
<tr>
<th>Type of Soil</th>
<th>Gradation</th>
<th>k Value in mm/s</th>
<th>k Value in m/day (after Schöller, 1962)</th>
<th>Degree of Permeability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravels</td>
<td>Coarse</td>
<td>10 to 1</td>
<td>1 to $>10^3$</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>1 to 10^{-1}</td>
<td>1 to 2×10^2</td>
<td>Medium</td>
</tr>
<tr>
<td></td>
<td>Fine</td>
<td>10^{-1} to 10^{-2}</td>
<td>10$^{-1}$ to 10</td>
<td>Very Low</td>
</tr>
<tr>
<td>Sands</td>
<td>Coarse</td>
<td>10^{-2} to 10^{-3}</td>
<td>10$^{-1}$ to 10</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td>10^{-3} to 10^{-4}</td>
<td>10$^{-1}$ to 10</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Fine</td>
<td>10^{-4} to 10^{-5}</td>
<td>10$^{-1}$ to 10</td>
<td>Very Low</td>
</tr>
<tr>
<td>Silt and Peats</td>
<td>Coarse</td>
<td>10^{-4} to 10^{-5}</td>
<td>10$^{-1}$ to 10</td>
<td>Practically Impermeable</td>
</tr>
<tr>
<td>Clays</td>
<td>Coarse</td>
<td>10^{-6} to 10^{-8}</td>
<td>10^{-3} to 10^{-7}</td>
<td>Practically Impermeable</td>
</tr>
</tbody>
</table>
Groundwater Mounding - Causes, Issues and Prevention

• Groundwater Mounding Considerations
 – Will a mound occur beneath the infiltration area?
 – If so, how big could it become?
 • Horizontal and Vertical Extents
 – What could be affected?
 • Potential breakout
 • Seepage into buildings
 • Impact nearby potable water supply
Groundwater Mounding - Causes, Issues and Prevention

If GW Mounding May Occur

- Increase infiltration area – reduce HLR
- Increase VS - construct mound
- Decrease VS requirements – improve effluent quality
- Improve effluent quality and reduce required area
 - Type 2 system can decrease area by up to ±30%
- Decrease dose volume and increase dose frequency
- Other site-specific methods – install GW cut-off wall, etc
- Find new disposal area

If All Else Fails - Obtain Specialized Expertise
Groundwater Mounding - Causes, Issues and Prevention

Specialized expertise could include

- Conduct more detailed site assessment
- Identify GW flow direction and potential downgradient receptors
- Identify more suitable disposal locations
- Estimate possible groundwater mounding amount and effects
- Help with upgrading treatment and disposal design
- Interface with owners and regulators
Groundwater Mounding - Causes, Issues and Prevention

• Comments??

• Questions???
Groundwater Mounding - Causes, Issues and Prevention

• Perc Tests vs Perm Tests vs Soil Profiles
 – All methods to estimate / measure soil permeability
 – Perc tests very simple but fundamentally flawed
 • Disturbed fines often reduces infiltration rate, especially after repeated tests
 – Perm tests more accurate and more consistent
 – Soil profiles alone can be OK, but very subjective
 • Not quantitative – no data to support design or to troubleshoot problems
Groundwater Mounding - *Causes, Issues and Prevention*

Large Site Factors – BC Soil Survey Information

- Soil parent material
- Soil drainage characteristics
- Other useful information

Hsl – Nahun sandy loam
- Fine textured surface layer overlying coarse gravelly cobbly sand, can also overly areas of reworked glacial till
- A/B5- Steep irregular slopes
- Well drained
Groundwater Mounding - Causes, Issues and Prevention

Once effluent gets into shallow GW, it may travel quite a long ways

- Bacteria and viruses can travel several hundred meters downslope, nitrates even further
- Steep gradient – long narrow contaminant plume
- Flat gradient – wide contaminant plume
Groundwater Mounding - *Causes, Issues and Prevention*

SSR 30 m Setback Distance

- “Approved” safe distance from wells, lakes, creeks, etc.
- First required in the **1893 BC Health Act**
- Based on what seemed reasonable at the time
- Is it prudent to apply this to all situations?